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Abstract—An accurate and efficient hybrid formulation based on Lagrange’s equations of motion
is presented to solve geometrically axisymmetric problems associated with layered semi-infinite
media under arbitrary loading. A near-field region containing all inhomogencities is modelled using
conventional finite elements. The contribution of the exterior semi-infinite domain to the equations
of motion is represented by a surfuce integral defined over the finite element boundary. The integrand
of this integral involves a matrix relationship between harmonics of nodal displucements and
tractions at the finite element boundary. A boundary traction-displacement relationship for the
exterior domain is established in terms of traction and displacement Green's functions for a uniform
(undisturbed) half space. The present formulation guarantees a symmetric stiffness matrix for the
entire system, Therefore, both direct and indirect versions of the boundary integral equation method
can be used. The accuracy of the hybrid modelling algorithm is confirmed by solving a few
elastostatic and elustodynamic boundary-value problems for which analytical solutions can be
derived.

INTRODUCTION

An interesting class of problems in mechanics is associated with domains which are con-
sidered to be unbounded. In particular, theoretical idealizations adopted for analysis
of three-dimensional problems encountered in peomechanics, scismology, composite
materials, fracture mechanics, and non-destructive testing applications are based on models
involving layered semi-infinite media. The interest in problems involving semi-infinite media
may be traced back to the classical studies by Boussinesq (1885), Cerruti (1882), Lamb
(1904), and Mindlin (1936), dealing with a point loading of a homogencous half space. The
majority of practical problems associated with semi-infinite media involves complicated
geometries, boundary conditions, and non-homogencous material compositions. An
attempt to obtain an analytical solution to such a problem often leuds to the solution of a
mathematically intractable boundary-value problem.

Previous work

The application of the finite clement method to the present class of problems is
encountered with the fundamental problem of adopting a finite size model for a medium
which is unbounded. Lurge size finite clement models with elementary boundaries could
circumvent this difficulty for static loading. However, as can be scen from the work of Muki
and Dong (1980), the dimensions of such a finite element model have to be quite large and the
solution is highly ineflicient, especially when layered systems are considered. An attractive
alternative to obtain better efficiency while preserving the accuracy was pioneered by Bettes
(1977), Bettes and Zicnkiewicz (1977), and Anderson and Ungless (1977), by introducing
infinite clements to model the far-ficld domain of an unbounded homogencous medium. The
concept of infinite clements has been recently extended to clastostatic problems involving a
multi-layered half space (Rajapakse and Karasudhi, 1985).

In the case of elastodynamic problems, finite element models with elementary bound-
arics violate the radiation conditions and lead to spurious solutions. Lysmer and Kuhle-
meyer (1969) proposed to avoid reflection at the boundary of the finite element model by
placing dashpots at nodal locations. This approach, known as the viscous boundary model,
is strictly valid only for onc-dimensional waves with normal incidence. Waas (1972) pre-
sented an accurate transmitting boundury for planc and axisymmetric problems of a layered
stratum underlain by a rigid base. This algorithm was later extended to axisymmetric
problems under arbitrary loading by Kausel er al. (1975). The concept of the infinitc element
has also been extended to elastodynamic problems (Chow and Smith. 1981 ; Medina and
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Penzien. 1982; Rajapakse and Karasudhi, 1986) associated with a homogeneous elastic
half space.

The global-local finite element method developed by Mote (1971) to study beam and
plate vibration problems has recently been extended to study elastostatic and elastodynamic
problems of unbounded media by Muki and Dong (1979, 1980). Dong (1981), Goetschel
et al. (1982). and Avanessian et al. (1986a.b). For elastodynamic problems, the method
relies on the use of wave function solutions for a full space. and this violates the traction
free boundary conditions when applied to half space problems. The study by Avanessian
et al, (1986a.b) proposes to achieve traction-free boundary conditions at the surface level
for half space problems by imposing a set of integral constraints on tractions resulting
from the full space solution at the surface level. The effectiveness and accuracy of this method
to solve a variety of elastodynamic problems associated with an isotropic homogeneous half
space has been demonstrated by Avanessian et @f. (1986a.b). The disadvantage of this
approach is the difficulty associated with its extension to layered systems, in particular. for
elastodynamic problems.

During the last two decades, a considerable development has been reported (Cruse
and Rizzo, 1975: Cruse et al.. 1985) in the application of the boundary integral equation
method to solve a variety of boundary-value problems in mechanics. The pioneering work
of Rizzo (1967) dealing with elastostatics and later work by Cruse and Rizzo (1968) and
Cruse (1968) presented a systematic application of the boundary integril equation method
to problems in clasticity. A recent article by Kobayashi (1984) presents @ concise treatment
of the application of the boundary integral equation method to clastodynamics and the
study by Rizzo ¢t al. (1985) considered the application to scattering and radiation problems
involving a full space.

In recent years, some attention has been focused on the coupling of the finite element
mcthod and the boundary integral cquation to solve more complicated problems with better
efliciency and accuracy, since far-field representation is more rigorous than previously
mentioned schemes. Another advantage is that the layered systems can be treated with a
sound theoretical basis. The general coupling procedure of the boundary integral equation
method with other numerical methods is discussed by Zienkiewicz ef of. (1977) and Shaw
(1978), and more recently by Wolf and Darbre (1984) and Chen and Penzien (1986) for
dynamic soil structure interaction problems. A review of the literature reveals that the
application of the coupled finite clement-boundary integral scheme to elastostatic and
clustodynamic problems involving semi-infinite media warrants further investigation. Con-
ceptual aspects such as the occurrence of a non-symmetrie stiffness matrix in the analysis
and numerical aspects such as the selection of load and observition points in the boundary
representation of exterior semi-infinite domain deserve particular attention. Furthermore,
the application and verification of coupled schemes for elastodynamic problems involving
layered systems have not been reported in the literature.

Present study
In this paper, consideration is given to the layered elastic half space system shown in
Fig. | where a near-ficld region V' enclosing all inhomogeneities is modelled by conventional
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Fig. 1. Layered half space with inhomogencities.
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finite elements. The problems under consideration involve axisymmetric geometries and
arbitrary loading.

The equation of motion of the near-field finite element region is developed through the
application of Lagrange's equations of motion (Washizu, 1982) in classical elastodynamics.
The incorporation of near-field finite elements to the variational formulation follows stan-
dard procedure. The influence of the far-field domain ¥ on ¥’ is modelled by separating
¥’ from V along the contact surface S, and applying an appropriate contact traction field
on S,. A linear relationship between displacement and traction vectors corresponding to
nodes on the contact surface S, is developed through the consideration of the displacement
Green's function for the exterior domain }°. The Lagrangian function of the near-field
domain which consists of volume integrals representing kinetic and strain energy of /" and
a surface integral on S, representing the contribution due to the boundary traction field is
expressed in terms of nodal displacement and velocity vectors. The substitution of the
Lagrangian function in Lagrange's equations of motion and subsequent differentiation
leads to the equations of motion of the near-field domain.

The present formulation guarantees a symmetric stiffness matrix for the entire system,
regardless of the symmetry of the boundary traction—displacement relationship. This allows,
as illustrated in this paper, the use of both direct and indirect versions of the boundary
integral equation scheme in the analysis to develop the traction—displacement relationship
along S,. The implementation of the present algorithm relies on the availability of dis-
placement and traction Green's functions for the exterior domain, A brief discussion on
relevant Green's functions is also presented.

In the numerical study, emphasis is placed on a comprehensive verification of the
performance of the preseat algorithm when applied to solve elastostatic and clastodynamic
problems rather than its application to a varicty of complicated practical problems involving
layered systems. The performance of the hybrid model is rigorously investigated for various
parameters by studying the response due to a harmonic torsional patch load acting on the
surface of & homogencous half space. The applicability and the accuracy of the hybrid
scheme is further confirmed by studying the response due to a harmonic vertical patch load
acting on the free surface. The application of the hybrid scheme to layered systems is
illustrated by studying torsional vibrations of a layered elastic half space under surfuce
loading and comparisons are presented with the corresponding analytical solution. Next,
the torsional vibration of a flexible cylinder embedded in a layered clastic half space is
studicd to itlustrate the effectiveness of the present hybrid modclling.

HYBRID FORMULATION

In the proposed hybrid formulation, a ncar-field region ¥ enclosing all inhomo-
geneities is modelled using conventional finite clements. Without loss of generality, the
geometry of the near-field region is selected as a hemispherical domain with radius « as
shown in Fig. I. At this stage, it is advantageous to nondimensionalize the entire problem
including the coordinate fraume with respect to a. The present class of problems is treated
within the framework of the classical clastodynamic theory based on small displacements
and infinitesimal strains. In what follows, a rigorous variational formulation which is based
on Lagrange’s equations of motion is presented to solve the system depicted in Fig. 1.
Conventional Cartesian (x, v, z) and cylindrical (r, 8, ) coordinate systems are employed
in the sequcl.

In view of the axial symmetry of the gcometry of the problem displacements, stresscs
and other relevant quantitics may be expanded in a Fourier series with respect to the
circumferential coordinate (). For example, displacements w,(r,0,2,1), uy(r,0,z,t) and
w(r. 0,2, 1) in the r-, 0-, and z-directions, respectively, may be expressed as

u(r,0.2.0) = Y [u.(r.z,. 1) cos ) +ii,,(r, =, t) sin n0]] )
n=()
ulr,0.2.0) = Y [ttan(r. =, ) sin nl — iy, (r, =, 1) cos nfl] (2)

n=0
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u(r.6.2.1) = i [tn(r, =. ) cOS RO+ ti, (r. =, 1) sin 16 3)

a=0

where u,,. u,,, u., denote symmetric components of displacements and &,,. i&,. 4., denote
antisymmetric components of displacement. The antisymmetric components appearing in
the Fourier expansion may be suppressed without loss of generality and in what follows,
only symmetric components are considered. The formulation for antisymmetric components
may be obtained from that for the symmetric components by replacing cos nf by sin nf
and sin n8 by —cos nf. Furthermore, it is assumed that the motion under consideration is
harmonic, which is characterized by the term " (omitted in the sequel), wherei = J-1

Finite element domain

Consider the interior domain F” in Fig. 1, modelled using finite elements. The dis-
placement vector u(r, 8, 2) and velocity vector a(r, 8, 2) at a point within an element ¢ having
p nodes may be approximated by harmonics of the nodal displacement vector g, and nodal
velocity vector ¢,

o

u(r.0.2) = Y [N][Q]ng% (4a)
ur.0.2) = Y [N[Ql.9. (4b)

where
u=du, u, ), a=du i adt 5

and [N]is the displacement interpolation function matrix defined as

N 0 0
[NlI={0o N o (6a)
6 0 N
with
N=(N, Ny ... NI (6b)
[Q] tm 0

[Q]"' = [Q]lm (73)

0 [Qllm
[Q)im = cosmO[I]: [Q]a, = sinmb{{] (7b)
LR RO (8a)
Qom = (g - D, a=r0.z2 (8b)

Incqns (6), N, (j = L..... p) denote nodal shape functions of a near-field isoparametric
finitc element, and the explicit representation of N, is given by Zienkicwicz (1977). The
symbol [/] in eqns (7b) denotes a unit matrix. The mth harmonic of displacement in the a-
direction of node j is denoted by ), (x =r, 0, z; j=1,....p). Also note that §;, in eqn
(4b) is defined similar to ¢, in eqns (8).

The strain vector ¢ of an element can be expressed in terms of the harmonics of nodal
displacement as
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5.3,

Fig. 2. Free-body diagrams of near- and far-field domains.

e= Y (Bl.q, &)
m={
where
8=CE, E. Ew & Em &) (10)

Note that the differential operator [8], contains circumferential dependence. The
relationship between the stress vector o and the strain vector £ can be expressed as

o = [Dle. {(n
where

6'—“‘.(6:; G:: Op O, Oy d'!?:>T' ([2)

In eqn (1), [D] is the constitutive matrix for the material (Fung, 1965).

Boundary surfuce

Consider the boundary surface §; which separates the interior finite element region V”
and the exterior semi-infinite domain ¥ as shown in Fig. 2. In view of the axial symmetry
of the problem, S, is identical to the surface generated by the quarter-circle arc S in the
r-z plane about the z-axis. Thus, a point P(r, z) on S represents a circle with radius r. It is
assumed that the boundary curve § has a total of #; finite element nodes. The displacement
vector u*(r, 0, z) and traction vector #(r, 0, z) at an arbitrary point on the boundary may
be expressed as

u’(r,0,2) = }:0 (N1 (O]9 (13)
and
(r.0.2) = Zo [N[Q]m8n (19)

In eqns (13) and (14), [N] and [Q],, are defined similar to eqns (6) and (7). except that
the size of these matrices is determined by the number of nodal points on S. In addition,
g. in eqn (14) denotes a vector consisting of m harmonic components of nodal tractions,
and is defined as

8n={Bm Bom Bom)' (15a)

and
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Bm =T .. THD, a=rb, - (15b)

In eqns (15). 1., denotes the mth harmonic of traction in the x-direction at node j
U=1HL.... np)

Let G(r 25 5. 27 f7(0), [f7(8) = cos mb for x = r, = and f7(6) = sin mf for 2 = 6}
denote the displacement in the x-direction (x = r, 8, =) at point P(r, 8, z) in V' due to a
concentrated ring load in the f-direction (8 = r, 8, z) through the point Q(s5.2") on S. The
circumferential distribution of the ring load is taken as cos m#f for § = r, = and sin mé for
B = 0. The following integral relationship can be established for a harmonic of displacement
component within an arbitrary point in the r-- plane in ¥ denoted by u,,,{r,2) as

Uplr.2) = J Go(r, 238, 2) tam(s, 2)sdS. 2, B=r0.z (5.2)eS. (16)
AY

In eqn (16). 1. denotes the mth harmonic of boundary traction component t3 and
summation is implied on index f. The vector t,, consisting of the mth harmonic components
of traction at an arbitrary point on the boundary may be interpolated in terms of vector
£, consisting of the mth harmonic of tractions at boundary nodes as

Talr.2) = (N]gm an

In view of eqns (13) and (17), the following relationship can be established by applying
eqn (16) to nodal points:

. = £ [Gaplm[Nigws dS (18)
which may be expressed as
@, = [Elngn (19
where
[E). = i{é,ﬂmmsds o
or
2 = [G*]n Q5 @)

where {G*],. = [E]..}

Equation (21) presents a lingar relationship between nodal displacement and traction
vectors for an arbitrary harmonic,

Substitution of eqn (21) in eqn (14) results in

«(r.0.2) = iﬁm (Q1.(G*]d. Q2

Equation of mation of V'
Lagrange's equations of motion for the finite element domain are expressed as (Wash-
izu, 1982)
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d (il cL
—l— - —=0m =0,1,2... 23
d (eqm) fq, = Om " @

where the Lagrangian function of I denoted by L is defined as

L= %IJI (pau—co)dV’ — ;JI W)t dS, (24)
- 3 - Sy

and the generalized force vector Q,, is given by

cu’

In eqn (25). the vector F with components arranged in order similar to eqn (5) denotes
the externally applied traction on surface S, of the finite element region. Note that terms
associated with the volume integral in eqn (24) represents the kinetic and strain energy of
domain V7, respectively. The surface integral over S, corresponds to the work done by the
traction field on §,.

The substitution of eqns (4). (9). (11), (13). and (22) in eqn (24) results in an explicit
representation for L in terms of nodal displacement and velocity vectors. These explicit
representations are then substituted into eqn (23). Subsequent differentiations together with
the orthogonality of trigonometric functions, and the assumption that motion is harmonic,
leads to the following cquations of motion for cach harmonic m:

[—w M), +[K]n+[K)WQw =P, m=0,1,2,... (26)
where
(M) =Y f PIOLINITINI Q] dV* (27)
rre
(Kl =Y J“ (Bl.[D][B).dV* (27b)
P,=3 ; [Q1.IN]T[N](Q]. F dS; (27¢)
G =) Q. (27d)

In the above cquations, ¥ denotes volume of a near-field clement and S5 denotes the
surface arca over which external tractions are applied on a near-field finite element. It can
be observed that the first two terms in eqn (26) represent the standard form of symmetric
mass and stifTness matrices of a near-ficld finite element region in an elastodynamic analysis.
Note that circumferential dependence embedded in [Q],, in eqns (27) can be integrated
analytically in the numerical implementation.

In eqn (26). (K, represents the contribution of the boundary tractions representing
the influence of domain ¥ on ¥ to the equation of motion corresponding to the mth
harmonic and defined as

o o
=2 ) 9

The square stiffness matrix [H],, of size 3n, is defined as

SAS 24:12-C
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1
(H]n = §”; {{G*]AlQ1nINTTINT (O] + [Q1[NTTIN][Q1.[G*)} Sy (29)

It should be mentioned here that [H],, is symmetric irrespective of the symmetry of
[G*]., defining the relationship between the mth harmonic of nodal displacement and
traction vectors at the boundary.

At this stage, attention is focused to studies by Wolf and Darbre (1984) and Chen and
Penzien (1986). where the contribution of the exterior domain is incorporated into the
equations of motion through the continuity of displacements and tractions at boundary
nodal locations. In these formulations, [G*],, enters into the analysis as a direct addition to
the equation of motion. Therefore. the symmetry of the final equation system is violated
unless [G*],, is symmetric. As a consequence, a special technique such as the weighted-
residual version of the indirect boundary element method has to be used to guarantee the
symmetry of [G*],,. However, in the present formulation, the influence of exterior domain
is incorporated directly into the variational treatment, instead of using a discrete continuity
relationship. Consequently, the unconditional symmetry of [H]., allows the use of both
direct and indirect versions of the boundary integral equation method without any special
techniques.

THE BOUNDARY TRACTION-DISPLACEMENT RELATIONSHIP

The hybrid formulation presented in the preceding section relics on the existence of a
traction -displacement refationship at boundary S. In eqn (16), such a refationship has been
established between harmonics of displacement and traction at the boundary through the
Green's function G2 (r. = ; 7', ') corresponding to domain V.

It is important to realize that the above Green's function s different from that cor-
responding to a uniform half space without a cavity. According to the authors’ knowledge,
a direct derivation of a Green's function for a half space with a cavity has not been reported
in the literature, cven for the simplest possible loading case. In the present study, the
relationship between boundiry truction and displacements is obtained through the appli-
cation of integral representation theorems (Eringen and Suhubi, 1975) (direct boundary
integral equation method) or the indirect boundary integral equation method due to Ohsaki
(1973). These algorithms are based on displacement and traction Green's functions for a
uniform (without a cavity) half space region.

Indirect method

First, consider the indirect boundary integral equation method due to Ohsaki (1973).
The traction-displacement relationship at boundary § is developed by considering the
uniform half space region. In this method, an arbitrary contour S’ interior to S is selected
as shown in Fig. 3. In a three-dimensional figure S and S’ represent a hemispherical surface
S, and S, respectively. Consider a foree field ©° applied over the surface §°. In view of the
axial symmetry, it is possible to develop the following relationships involving harmonics
of displacements and tractions in § and harmonics of forees applied on S

z
Fig. 3. Uniform half spacc region with contours Sand S°.
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w,(r.2) = J wr o ) tpa(r,2)r' dS’ (30)
-
Tum(7.2) = f To(r.z:r. ) taa(r'.2YrdS. (r.2)eS. (r.2)eS". &1))
-

In eqns (30) and (31). Gy(r. =: r'. 2) and Th(r, z: r’. =) denote harmonics of
displacements and traction in the x-direction at point (r. =) due to a ring load through point
(#’. =) in the -direction. Note that G5 and T7;; are displacement and traction Green's
functions, respectively, for a uniform (undisturbed) half space. A discrete representation of
eqn (30) may be obtained by considering a total of n; nodal points on §” and applying eqn
(30) to n, nodal locations on S. In doing so. the following representation is obtained :

Q= [4).8' (32

where

[A ]"' = J; [G:II]m[N]r, ds’

In cqn (32). g., is a vector containing the mth harmonic of forces applied on §” and it
is defined similarly to g, given by egns (15). The number of nodal locations on § and §°
need not be equal, since g, corresponding to a specified g, may be obtained by solving eqn
(32) in a least square sense. In doing so, the following relationship can be established

g, = [Al.q (33)

where
[/7]’" = [[A ]'EI[A ]"l] » l[A ]I";‘

The mth harmonic of the force vector 1, at a point may be interpolated in terms of
nodal vector g,, as

T = [Nlg. (34)

Substitution of eqns (33) and (34) into eqns (31) yiclds

Tm(r.2) = J; (T [N][A).q.,r dS’ (35)

where

(T™>=(T7 Tun Trd, (r.2)eS
T'&:(Tzl(r'z:’)':'))Ixn','

The application of eqn (35) to nodal locations on S leads to the following relationship
between the mth harmonic of the nodal traction vector g, and the displacement vector ¢, :
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g = { [ AT N[ AL dS’} Q. (36a)
Comparison of eqns (21) and (36a) implies that
[G*], = L[ TN [A]r dS". (36b)

Direct method

As an alternative to the above indirect boundary integral equation algorithm. one can
also use the integral representation theorem for an elastic solid (Eringen and Suhubi. 1975)
to obtain a representation for [G *] in terms of tractions and displacement Green's functions
for a uniform half space. In the case of systems involving axial symmetry, a reduced version
of representation theorems may be written as

O(r'. .2 VW, (r', ) = f [Grr.zir 2N tyu(r.2) — Tp(rozir 2V (r.2)] rdS 37
5

where

0, (r.2)eV’
(r.z)eS (38)
(r.zYeVl.

S(r.z) =41,
I

The application of =gn (37) with («/, =) € V"’ leads to the identity

N

I ;;‘,(r.:;r’.:')t,,,,,(r.:)rd.S‘=J'I‘,’:;(r.:;r',:')u,“,,,,(r.:)rdS. (r.z)eV: . (r.2)eS.
AY
(39)

Note that 1, (r, =) and u},,(r, 2) of boundary S may be interpolated in terms of nodal
vectors ¢, and ¢, respectively, as given by eqns (14) and (13). This, together with the
consideration of a set of points on an arbitrary contour §” (Fig. 3) yiclds a discrete version
of eqn (39) as

[Bl’"g"l = [C']'"ql':' (40)
where
[B]m = J; [Gllz]m[N]rdS (4”
and
[Cl. = JL[T,,,]’"[N]rdS. (42)

A direct representation of g, in terms of q), may be obtained from eqn (40) if the
number of points selected on § and S’ are equal. In this case
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g = [8].'[Cl.qn- (43)
The above equation implies that [G*],, in eqn (21) may be expressed as

[G‘]m = [B];I[C]m (44)

Comparison of eqns (36b) and (44) shows that in both methods load sources are
considered on S”. In the direct method. ring load sources acting at discrete points on §” are
used whereas in the indirect method loading sources distributed along the entire contour
S’ are used. On the other hand, in the direct method the entire contour S is incorporated
into the analysis. whereas in the indirect method only discrete points located on S are used.
When the number of nodal points considered on § and S’ are equal, the indirect method
reduces to a representation similar to that obtained from the direct method. However, the
associated matrices involve integrals defined over two different contours.

Another representation for g,, derived on the basis of eqn (37) for a given g}, which
does not require that the number of nodal points on S and §” be equal is presented by
Apsel (1979). Apsel's scheme leads to a representation similar in structure to that obtained
through the application of Ohsaki's scheme (1973) as given by eqn (36b).

At this stage, it can be stated that the boundary traction-displacement relationship
[G*].. for a given harmonic can be established by using eqn (36b) or eqn (44). Any of these
representations of [G*],, will allow the computation of [H],, in eqn (29). Thereafter,
eqn (26) is solved for q,, corresponding to a given geometric and loading configuration.
Representations for [G*],, involve matrices the elements of which are displacement and
traction Green's functions for a half space duce to ring loads with circumferential dependence
7). A briel discussion on the derivation of these Green's functions is presented in the
following section.

Green's functions

The establishment of traction-displacement relationship [G*],, relics on the availability
of Green's functions corresponding to a uniform half space in the absence of any inhomo-
geneity. The general solution to equations of cquilibrium for a three-dimensional clastic
solid may be obtained through the application of Hankel integral transform techniques.
The study by Harding and Sneddon (1945) presents perhaps the carliest application of
Hankel integral trunsforms in the solution of boundary-value problems in classical elasticity.
A later study by Muki (1960) presented a generalization of the solution approach of
Harding and Sncddon (1945) to solve boundary-value problems in ¢lastostatics involving
axisymmetric geometrics under arbitrary loading. Later studies by Westmann (1964) and
Chan et al. (1974) demonstrated the application of Muki’s approach to obtain elastostatic
Green's functions for layered media. A general formulation for elastostatics of layered
systems in terms of Fourier integrals has been presented by Chen (1971). The dynamic
response of a multi-layered half space hus been investigated by many researchers over the
past several years. Among others, Thompson (1950), Haskell (1953), Jardetzky (1953),
Harkrider (1964, 1970), Schwab (1970), Apscl (1979), Luco and Apsel (1983) and Apscl
and Luco (1983) studied various aspects of the dynamic Green’s functions of a multi-
layered half space.

These studies indicate that in general, the explicit derivation of Green's functions G
and T3, for an arbitrary harmonic m is possible only in the case of a homogeneous half
space. The tedious nature of algebra involved in the derivation of Green's functions for
layered systems can be scen from the solution of Chan er al. (1974), where a static loading
at the interior of a single-layered half space system is considered. In the case of multi-
layered systems, the most efficient way is to solve numcrically for arbitrary functions
appearing in the general solution and to construct all Green's functions through an appro-
priatec numcrical integration scheme. The studies of Apscl (1979), Luco and Apsel (1983)
and Apsel and Luco (1983) present a concise treatment of the evaluation of Green's
functions for a multi-layered elastic half space. A systematic procedure for the numerical
evaluation of Green's functions, its implementation and various computational aspects are
discussed in detail in these references.
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NUMERICAL RESULTS

In the numcrical study, the performance of the present hybrid algorithm is investigated
by considering o few boundary-value problems associated with semi-infinite media for
which analytical solutions can be derived.,

Problem |

The problem of a homogencous elastic half space subjected to a linearly varying static
(e = 0} torsional patch load applied over a circular area at the surface level, as shown in
Fig. 4(a) is considered. The analytical solution corresponding to this boundary value
problem may be obtained from the fundamental solutions presented by Karasudhi er al.
(1984). Their solution is expressed in terms of infinite integrals of the Lipschitz-Hankel
type, which may be expressed in terms of clliptic integrals by using identities given by Eason
et al. (1955). At present, mathematical software is available to compute elliptic integrals
with very high numerical precision. Therefore, the elastostatic solution corresponding to
the loading configuration shown in Fig. 4(a) can be computed very accurately without
adopting computationally expensive and less accurate numerical integration schemes. The
near-field finite element meshes (cight-node elements) used in the hybrid scheme are shown
in Figs 5(a)-(c). These represent relatively coarse to finer mesh configurations. Note that
for the loading configuration shown in Fig. 4(a), u, and u_ ar¢ identically zero. Displacement
and traction Green's functions required in the computation of [G*], of the exterior domain
have been given {Rajapukse and Sclvadurai, 1985). The resulting expressions consisting of
infinite integrals are then cxpressed in terms of elliptic integrals (Eason et al., 1955) for
numerical evaluation.

At this stage. it is uscful to define a measure of the error of displacement for the
purpose of comparison. The Euclidean norm of the error of displacement in the f-direction
along a specified contour is defined as

L3 1:2 LA 12 y 1;2
a-l(3a)-(La) JJEa)" wooe @

In eqn (45). subscripts b and § are used to denote quantities associated with the finite
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Table 1. Comparison of Euclidean norm of error of displaccment «, for various mesh configurations shown in
Fig. 5 and location of §” for static loading shown in Fig. 4(a): g = |, d/a = 0.5

Mosh [':. (/u) Eh (u/n)
number F=095 £=09 F=08 F=075 F=095 HF=09 F=085 £H=075
Mesh —241 -1.21 —0.988 —0940 -=-20.12 ~-3.66 —0.505 0.110
Mesh 2 -0.67 —0.154 ~0.111 —0.108 —8.97 —0.700 —0.040 —0.009

Mesh 3 -0.426 -0.19} -0.179 ~0.174 -0.428 -0.378 -0.233 -0.225

clement boundary (BA) and surface level (OA); n, and n; denote the number of nodal
locations on BA and OA, respectively ; uy, denotes displacement in the O-direction at node
J obtained from the hybrid scheme and #,; denotes the corresponding analytical solution.
Table | presents numerical values for E, and E; obtained from the present hybrid
scheme for three finite element meshes shown in Fig. 5. These results correspond to four
different locations of contour S’ characterized by b (=a’/a) and [G*], obtained using eqn
(44), which is based on a direct application of integral representation theorems. In most
cases, the tabulated error norms are very small, indicating the high accuracy of the present
hybrid scheme. [t can be seen that for & = 0.95, the value of E, is quite large when compared
to E, for other values of 4. This is due to the fact that as  — 1, Green's functions approach
singular values, resulting in ill-conditioned matrices in the process of evaluation of [G*],.
In general, the results presented in Table | suggest that near exact solutions can be obtained
from the present hybrid algorithm using any of the finite element meshes shown in Fig. §
with 0.75 < # < 0.90. Table 2 presents numerical values of E; and E, when Ohsaki's scheme
(cqn (36b)) is used to compute [G*],. These results correspond to two locations of contour

Table 2. Comparison of Euclidean norm of error of displacement u, for
static torsional loading shown in Fig. 4(a) with [G*]), computed using
equation (36b): u = |, d/a = 0.5

Number of E, (%) E, (%)
sources 6=090 b=0385 6=0.90 b =085

6 —0.065 -0.132 1.18 0.305
8 0.148 -0.152 0.126 0.084
0

1 ~0.160 ~0.155 -~0.041 0.026
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S’ defined by 6 = 0.9, 0.85 and three different values for the total number of divisions
on §’. For brevity only the numerical results corresponding to the finite element mesh
shown in Fig. 5(b) are presented. A comparison of non-dimensionalized displacement
profiles along OA and BA obtained from the hybrid model with the corresponding analytical
solutions are presented in Fig. 6. The high accuracy of the hybrid model is confirmed by
results presented in Tables T and 2 and Fig. 6, irrespective of the scheme employed to obtain
[G*]o- Solutions presented in the remainder of this paper are based on [G*),, computed
using eqn (36b).

Problem 2

Attention is next focused on the clastodynamic torsional loading problem shown in
Fig. 4(a). The relevant non-dimensionalized frequency parameter ay, is defined as «, = ak,,
where £, is the shear wave number (Achenbach, 1973) corresponding to the surrounding
half’ space. The analytical solution corresponding to this loading configuration may be
obtained through the application of Hankel integral transforms. The relevant Green's
functions required to compute [G*], have been presented (Rajapakse et al., 1987). Unlike
in the elastostatic case, all infinite integrals associated with analytical solutions for the
loading configuration shown in Fig. 4(a) and those involved with the computation of [G*],
have to be evaluated using a numcrical integration scheme. In this study, the standard
Simpson’s rule with a sufficiently small interval of integration is used. In general, special
attention is required in the evaluation of these complex-valued infinite integrals, since the
integrand is of an oscillatory nature, and decays very slowly when = — 2* (Fig. 3). For
clastodynamic problems, g, resulting from the solution of eqn (26), is complex. The error
norms are computed separately using eqn (45) for both real and imaginary parts of solutions.

Table 3 presents E; and E, along OA and BA, respectively, for ay = 1.25 and 2.0. The
source contour S’ is located at & = 0.9 and discretization configurations represented by
n; = 8-14 are considered for S$°. The finite element mesh shown in Fig. 5(c) is sclected to
satisfy requirements on the size of a finitc clement in clastodynamic analysis (Medina and
Penzicn, 1982 ; Rajapakse and Karasudhi, 1986). The low values of £; and E, in Table 3
indicate the accuracy of the hybrid modcl for elastodynamic problems. Error norms for the

Table 3. Comparisons of error norms along the boundary and surface for time-harmonic
torsional loading system shown in Fig. 4G):p =L u=1,=09,n, = l6

a, = 1.25 a, = 2.00

n E (%) £, (%) £, (%) E, (%)

8 0.39.7.14) (5.36. 3.65) (0.09. 6.76) (5.57.4.23)
10 (0.20. 1.75) (3.14.0.20) (0.06. 3.02) 4.94. 191
12 (~0.09.350) (=132 -737) (0.0l -1.02) (.14, —4.69

14 (0.09, 1.07) (1.25. —1.62) (—0.08, 2.36) (3.34, -0.0%)
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imaginary part of displacement are found to be slightly higher than those of real parts. In
general, the error norm along the boundary (£,) is higher than those for the static problem.
Figure 7 presents a comparison of the non-dimensionalized surface displacement profile
along OA for ay = 1.25 and 2.0. The corresponding displacement profiles along the finite
clement boundary BA are presented in Fig. 8. The high accuracy of the present hybrid
model is confirmed by these results for clastodynamic problems.

Problem 3

The next problem considered is that corresponding to a uniform harmonic vertical
pressure applicd over a circular arca on the surface as shown in Fig. 4(b). The analytical
solution corresponding to this loading configuration has been given for clastostatic and
clastodynamic cases (Selvadurai and Rajapakse, 1985 Rajapakse and Shah, 1987). For
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Fig. 8. Comparison of boundary displacement profiles for harmonic torsional loading (g = 1. p = 1,
dia = 0.5).
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the static problem, the analytical solution and Green's functions required in the evaluation
of [G*),, are computed by expressing all infinite integrals in terms of elliptic integrals. For
elastodynamic problems, the integrands of infinite integrals associated with the analytical
solution and Green's functions are singular at &, k, and k,, where &, &, and &, denote wave
numbers of shear, compressional and Rayleigh waves (Achenbach, 1973) of the surrounding
half space. All Green's functions required in the computation of [G*], corresponding to
the elastodynamic problem are evaluated using numerical integration along an appropriate
contour in the first quadrant of the complex planc (Rajapakse and Shah, 1987). A com-
parison of surface displucement profiles for both u, and «, obtained using a finite clement
mesh shown in Fig. 5(¢) are presented in Fig. 9. These results confirm the applicability and
accuracy of the present hybrid model under general loading configurations, and a wide
range of frequencies of applied loading.

Problem 4

The next problem considered in the numerical study is the case of torsional vibrations
of a layered elastic half space under the surface loading configuration shown in Fig. 4(c).
The finite element mesh of Fig. 5(d) is used. The analytical solution and Green's functions
required to compute [G*], corresponding to this problem are derived by using Hankel
integral transforms. A comparison of surface displacement profiles over a wide range of
frequency of excitation is presented in Fig. 10. Note that in this problem, a, = ak;, where
k' is the shear wave number of the layer. The accuracy of the hybrid model for elastodynamic
problems involving layered systems is confirmed by solutions presented in Fig. 10. Solutions
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were also obtained by varying & from 0.90 to 0.75 and # from 12 to 8 and thesc variations
showed negligible influence on the solution.

Figure 11 shows surface displacement profiles obtained from the present study for a
layered half space containing a flexible cylindrical inclusion, as shown in Fig. 4(d), under
a harmonic torsional loading applied at the surface level. The results were obtained employ-
ing the mesh of Fig. 5(d). It is noted that the flexibility of the cylinder has a significant
influence on the real part of the displacement within r/a = 0.6, and its influence on the
imaginary component is negligible. A similar behaviour of the imaginary component was
observed (Rajapakse er ¢l., 1987) where an approximate analysis is presented for a flexible
hemispherical foundation embedded in 2 homogeneous half space.

DISCUSSION AND CONCLUSIONS

The accuracy and efficiency of the present hybrid model is confirmed by the above
numerical examples. The extension to elastostatic or elastodynamic problems involving a
multi-layered half space does not involve any complications except the implementation of
a more generalized sub-program for the numerical evaluation of Green's functions. Since
conventional finite elements are used to model near field a variety of axisymmetric ge-
ometries and material properties may be considered for near-field inhomogencities. [t should
also be mentioned here that the present method does not impose any restriction on the
geometry of contours § and S’, although in this study these are sclected as quarter-
circles for homogeneous half space problems. In the case of layered media (Rajapakse and
Karasudhi, 1985), it is convenient to take contours S and S’ parallel to the z-axis within
the layers and as quarter-circles in the underlying half space, respectively, as shown in Fig.
5(d). The extension of the hybrid model to plane and general three-dimensional problems
involves only the substitution of relevant basic equations for displacements, strains, and
stresses.
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Based on the comprehensive study presented in this paper, the following conclusions
are drawn.

(a) The hybrid formulation presented in this study provides an accurate and efficient
solution procedure for elastostatic and elastodynamic problems involving layered semi-
infinite media.

(b) The present formulation guarantees a symmetric stiffness matrix in the analysis.
This allows the use of both direct and indirect versions of the boundary integral equation
method in the analysis.

(c) It is desirable from a computational point of view to select the contour S” sufficiently
away from the finitc element boundary and to use widely spaced source points on S’ to
avoid ill-conditioned matrices in the process of evaluation of [G*],,. In view of this, it is
rccommended that eqn (36b) is used to compute [G*],, instead of eqn (44). This enhances
the computational efficiency and numecrical stability of the present algorithm. Alternatively,
[G*].. can be obtained from the direct boundary integral equation by using the scheme
proposed by Apsel (1979).
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