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Abstract-An accurate and efficient hybrid lormulation based on Lagrange's equations of motion
is presented to solve geometrically axisymmetric problems associated with layered semi-infinite
media under arbitrary loading. A near-field region containing all inhomogeneities is modelled using
conventional finite elements. The contribution of the exterior semi-infinite domain to the equations
ofmotion is represented by a surface integral defined over the finite element boundary. The integrand
of this integral involves a matrilt relationship between harmonics of nodal displa~:ements and
tractions at the finite element boundary. A boundary traction-displacement relationship for the
exterior domain is established in terms of traction and displacement Green's functions for a uniform
(undisturbed) half space. The present formulation guarantees a symmetric stiffness matrix for the
entire system. Therefore. both dirl."Ct and indirect versions of the boundary integral equation method
can be used. The accuracy of the hybrid modelling algorithm is confirmed hy solving a few
ehlstostatic and elastodynamic boundilry-v;llue problems for which a""lytical solutions can be
deriwd.

INTRODUCTION

An interesting class of problems in mechanics is associ.tted with dom.tins which are con
sidered to be unbounded. (n particular, theoretical idealizutions .tdopted for analysis
of three-dimensional problems encountered in geomech.tnics, seismology, composite
materials, fnacture mech.lllics. and non-destructive testing applications are based on models
involving layered semi-infinite mediu. The interest in problems involving semi-inlinite media
may be traced back to the c1assic.11 studies by Boussincsq (f885). Cerruti (1882). Lamb
(1904), and Mindlin (1936). deuling with'l point loading of a homogeneous hulfspace. The
majority of practical problems associated with semi-infinite media involves complicated
geometries. boundary conditions, .Illd non-homogeneous material compositions. An
attempt to obtain an analytical solution to such a problem often leads to the solution of a
mathematically intractable boundary-value problem.

Previous work
The application of the finite element method to the present class of problems is

encountered with the fundamental problem of adopting a finite size model for a medium
which is unbounded. Large size finite element models with elementary boundaries could
circumvent this dimculty for static loading. However. as can be seen from the work of Muki
and Dong (1980). the dimensions ofsuch a finite element model have to be quite large and the
solution is highly inefficient. especially when layered systems are considered. An attractive
alternative to obtain better efficiency while preserving the accuracy was pioneered by Bettes
(1977). Bettes and Zienkiewicz (1977). and Anderson and Ungless (1977). by introducing
infinite clements to model the far-field dom'lin ofan unbounded homogeneous medium. The
concept of infinite elements has been n:cently extended to elastostatic problems involving a
multi-layered half space (Rajapakse and Karasudhi. 1985).

(n the case of elastodynamic problems. finite element models with elementary bound
aries violate the radiation conditions and lead to spurious solutions. Lysmer and Kuhle
meyer (1969) proposed to avoid reflection at the boundary of the finite clement model by
placing dashpots at nodal locations. This approach. known as the viscous bound.try model,
is strictly valid only for one-dimcnsiomtl waves with normal incidence. Waas (1972) pre
sented an accurate transmitting boundary for plane and axisymmetric problems ofa layered
stratum underlain by a rigid base. This algorithm was later extended to axisymmetric
problems under arbitrary loading by Kausel et al. (1975). The concept of the infinite element
has also been extended to elastodynamic problems (Chow and Smith. 1981; Medina and

1205



lZ06 R. K. K O. RAJAPAKSE and A. H. SHAH

Penzien. 198~; Rajapakse and Karasudhi. 1986) associated with a homogeneous elastic
half space.

The global-local finite element method developed by Mote (1971) to study beam and
plate vibration problems has recently been extended to study elastostatic and elastodynamic
problems of unbounded media by Muki and Dong (1979, 1980). Dong (1981). Goetschel
et al. (1982). and Avanessian et al. (1986a.b). For elastodynamic problems. the method
relies on the use of wave function solutions for a full space. and this violates the traction
free boundary conditions when applied to half space problems. The study by Avanessian
et aI, (1986a.b) proposes to achieve traction-free boundary conditions at the surface level
for half space problems by imposing a set of integral constraints on tractions resulting
from the futl space solution at the surface level. The effectiveness and accuracy ofthis method
to solve a variety ofe1astodynamic problems associated with an isotropic homogeneous half
space has been demonstrated by Avanessian et al. (1986a.b), The disadvantage of this
approach is the difficulty associated with its extension to layered systems. in particular. for
elastodynamic problems.

During the last two decades. a considerable development has been reported (Cruse
and Rizzo. 1975; Cruse ct al.. 1985) in the application of the boundury integral equation
method to solve a variety of boundary-value problems in mechanics. The pioneering work
of Rizzo (1967) dealing with elastostatics and later work by Cruse and Rizzo (1968) and
Cruse (1968) presented a systematic application of the boundary integral equation method
to problems in elasticity. A recent article by Kobayashi (1984) presents a concise treatment
of the 'Ipplication of the boundary integral el{uation method to c1ustodynamics and the
study by Rizzo t't al. (1985) considered the application to scattering and radiation problems
involving a futl space.

In reccnt years. some attention has been focused on the coupling of the tlnite clement
method and the boundary integral equation to solve more complicated problems with better
elliciency and 'Iccuracy. since far-field rcpresentation is more rigorous th,1Il previously
mentioned schemes. Another udvantage is that the layered systems can be treated with a
sound theoretical basis. The general coupling procedure of the boundary integral el{ltation
method with other numeric'll methods is discussed by Zienkiewicz ('t al. (1977) and Shaw
(1978). and more reccntly by Wolf and Darbre (198") and Chen and Penzien (1986) for
dynamic soil structure interaction problems. A review of the litemture reve,tls that the
application of the coupled finite clement-boundary integral scheme to el:lstost,ltic and
e1astodynamic problems involving semi-intinite media warmnts further investigution. Con
ceptual aspects such as the occurrem.:e of a non-symmetric stiffness rn,ltrix in the unulysis
and numerical uspects such us the seh.:ction of loud and observation points in the boundury
representation of exterior semi-infinite domuin deserve particulur utlention. Furthermore,
the application und veriticution of coupled schemes for dastodynumic problems involving
layered systems have not been reported in the litemture.

Pre.l'ellf .l'tl/((I'

In this puper. considemtion is given to the layered elastic half space system shown in
Fig. I where a ncar-field region V' enclosing all inhomogeneities is modelled by conventional

SurrounclinQ Layered
Holf • Spac:.
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Fig. I. Layered halfsl'a.:e with inhomogeneities.
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finite elements. The problems under consideration involve axisymmetric geometries and
arbitrary loading.

The equation of motion of the near-field finite element region is developed through the
application of Lagrange's equations of motion (Washizu. 1982) in classical elastodynamics.
The incorporation of near-field finite elements to the variational formulation follows stan
dard procedure. The influence of the far-field domain V on V' is modelled by separating
V' from V along the contact surface S/I and applying an appropriate contact traction field
on SII' A linear relationship between displacement and traction vectors corresponding to
nodes on the contact surface SII is developed through the consideration of the displacement
Green's function for the exterior domain V. The Lagrangian function of the near-field
domain which consists of volume integrals representing kinetic and strain energy of V' and
a surface integral on SII representing the contribution due to the boundary traction field is
expressed in terms of nodal displacement and velocity vectors. The substitution of the
Lagrangian function in Lagrange's equations of motion and subsequent differentiation
leads to the equations of motion of the near-field domain.

The present formulation guarantees a symmetric stiffness matrix for the entire system.
regardless of the symmetry of the boundary traction-displacement relationship. This allows.
as illustrated in this paper. the use of both direct and indirect versions of the boundary
integral equation scheme in the analysis to develop the traction-displacement relationship
along S,I. The implementation of the present algorithm relies on the availability of dis
placement and traction Green's functions for the exterior domain. A brief discussion on
relevant Green's functions is also presented.

In the numerical study. emphasis is placed on a comprehensive verification of the
performance of the present .tlgorithm when applied to solve c1'lstostatic and elastodynamic
problems rather th.1O its application to a variety ofcomplicated practical problems involving
layered systems. The performance of the hybrid model is rigorously investigated for various
parameters by studying the response due to a harmonic torsional patch load acting on the
surface of a homogeneous half space. The applicability and the accuracy of the hybrid
scheme is further confirmed by studying the response due to a harmonic vertical patch load
acting on the free surface. The application of the hybrid scheme to layered systems is
illustrated by studying torsional vibrations or a layered elastic half space under surl~lce

loading and comparisons arc presented with the corresponding analytical solution. Next.
the torsional vibration of a flexible cylinder embedded in a layered elastic half space is
studied to illustrate the el1cctiveness of the present hybrid modelling.

HYBRID FORMULATION

In the proposed hybrid formulation. a ncar-field region V' enclosing all inhomo
geneities is modelled using conventional tinite elements. Without loss of generality. the
geometry of the ncar-field region is selected as a hemispherical domain with radius a as
shown in Fig. I. At this stage. it is advantageous to nondimensionalize the entire problem
including the coordinate frame with respect to a. The prescnt class of problems is treated
within the framework of the classical elastodynamic theory based on small displacements
and infinitesimal strains. In what follows. a rigorous variational formulation which is based
on Lagrange's equations of motion is presented to solve the system depicted in Fig. I.
Conventional Cartesian (x.y. =) and cylindrical (r. O. =) coordinate systems arc employed
in the sequel.

In view of the axial symmetry of the geometry of the problem displacements. stresses
and other relevant quantities may be expanded in a Fourier series with respect to the
circumferenti'll coordinate O. For example. displacements IIr(r. O. =. t). 1I,,(r. O. =, t) and
1I:(r. O. =, t) in the r-, 0-. and =-directions, respectively, may be expressed as

"XO

IIr (r, O. =, t) = L [lIm(r. =. t) cos ,,0+ lim(r. =. t) sin nO]
n-O

-.:

1I,,(r. O. =. t) = L [1I"n(r. =. t) sin nO -lifln(r. =. t) cos ,,OJ
n_O

(I)

(2)
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:c

u:(r. 0.:. t) = L [u",,(r.:. t) COS nO + u:.(r.:, t) sin nO].-0 (3)

where Urn' UII•• U:1f denote symmetric components of displacements and u,•. U9lf' u:1f denote
antisymmetric components of displacement. The antis)mmetric components appearing in
the Fourier expansion may be suppressed without loss of generality and in what follows,
only symmetric components are considered. The formulation for antisymmetric components
may be obtained from that for the symmetric components by replacing cos nO by sin nO
and sin nO by -cos nO. Furthermore. it is assumed that the motion under consideration is
harmonic. which is characterized by the term e;"" (omitted in the sequel). where i = J-1.

Finite elemetlt domain
Consider the interior domain V' in Fig. I. modelled using finite elements. The dis

placement vector u(r. 0.:) and velocity vector u(r. 0,:) at a point within an element e having
p nodes may be approximated by harmonics of the nodal displacement vector q;;, and nodal
velocity vector q;.

T

u(r. 0.:) = L [N][Q]..q::,
m=O

"
u(r.O.:) = L [N][Qlmq;.

m.".()

where

and [NJ is the displacement interpolation function m<ttrix defined as

[NJ =[:
0

~]N
0

wilh

N=(N1 Nl ... Np)T

[ [QJ,.
[Q:,J

[QJ.. = [Qh.
0

[Q] I .. =cos mOl/] ; [QJlm = sinn/Of/]

q~, = <q~.. q~m q~",)T

q~.. = (u:.. tI~IIf)' Ct=r,O.:.

(4a)

(4b)

(5)

(6a)

(6b)

(7a)

(7b)

(8a)

(8b)

In eqns (6). Nj (j = I•... , p) denotc nodal shape functions of<1 near-ficld isoparametric
finite element. and the explicit representation of Nj is given by Zienkiewicz (1977). The
symbol [I] in eqns (7b) denotcs a unit matrix. The mth harmonic of displacement in the ce
direction of node j is denoted by II;'" (x = r. O. =; j = I, ... •p). Also note that q:;' in eqn
(4b) is defined similar to q;. in eqns (8).

The strain vector Il of an clement C<1n be expressed in terms of the harmonics of nodal
displacement as
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Fig. 2. Free-body diagrams or near- and far· field domains.

""
& = L [8}",q;;.

",·0
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(9)

(10)

Note that the differential operator [8]", contains circumferential dependence. The
relationship between the stress vector tI and the strain vector & can be expressed as

tI = [D]&.

where

In eqn (II). [D] is the constitutive matrix for the material (Fung. 1965).

( II)

( 12)

Boundllry surfac:e
Consider the boundary surface So which separates the interior finite element region V'

and the exterior semi-infinite domain Vas shown in Fig. 2. In view of the axi'll symmetry
of the problem. SI/ is identical to the surface generated by the quarter-circle arc S in the
r-: plane about the z-axis. Thus. a point Per. z) on S represents a circle with radius r. It is
assumed that the boundary curve S has a total of nb finite element nodes. The displacement
vector ull(r, 0, z) and traction vector -r(r, 0, z) at an arbitrary point on the boundary may
be expressed as

""ub(r, O,z) = L [N] [Q]",q~ (13)
",.0

and

co

-r(f,0, t) = L [N] [Q]",g.". (14)
.... 0

In eqns (13) and (14), [N] and [QJ", are defined similar to eqns (6) and (7). except that
the size of these matrices is detennined by the number of nodal points on S. In addition.
g", in eqn (14) denotes a vector consisting of m hannonic components of nodal tractions,
and is defined as

(15a)

and
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g.",==<t~ '" t',J,), ~==r,(J,:. (ISb)

In eqns (15). t;'" denotes the mth harmonic of traction in the ~-direction at node j
(j = I. .. .•n,,).

Let G;/I(r.:; s. :') f';«(J). (f;'«(J) = cos me for x = r. : and f;'(6) = sin m(J for x =6]
denote the displacement in the ~-direction (~ == r, 9, :) at point P(r. 9. :) in V due to a
concentrated ring load in the p-direction (P == r, 9, z) through the point Q(s. :') on S. The
circumferential distribution of the ring load is taken as cos mO for P= r. : and sin mO for
p= 6. The following integral relationship can be established for a harmonic ofdisplacement
component within an arbitrary point in the r-: plane in V denoted by u.",(r,:) as

U"",(r.:) == 1<i:p(r,:;s,:')t/l",(s,:')sdS. ~.p == r,O.: (s.:')eS. (16)

In eqn (16). tpm denotes the mth harmonic of boundary traction component tp and
summation is implied on index p. The vector 'tm consisting of the mth harmonic components
of traction at an arbitrary point on the boundary may be interpolated in terms of vector
g". consisting of the mth harmonic of tractions at boundary nodes as

'tm(r,:) = [NJg",. (11)

In view ofeqns (I J) and (17), the following relationship can be established by applying
eqn (16) to nodal points:

which may be expressed as

where

or

q~ == [El",g",

g,,, == [G·}",q~

(18)

(19)

(20)

(21)

where [G*)", == [E},,; I

Equation (21) presents a linear relationship between nodal displacement and traction
vectors for an arbitrary harmonic.

Substitution ofeqn (21) in eqn (14) results in

<r:,

't(r.O,z) = L [NHQI",fG*l.. q:'.
"'_I!

(22)

Equation ofmotion of v'
Lagrange's equations of motion for the finite element domain arc expressed as (Wash

izu,1982)
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d
d (:L)_ ~L = Q",. m = 0.1.2 ...

t lq", cq",

where the Lagrangian function of ~., denoted by L is defined as

and the generalized force vector Q", is given by

Ii CUT
Q", = F-:'l-dS~.

s. cq",

1211

(23)

(24)

(25)

In eqn (25). the vector F with components arranged in order similar to eqn (5) denotes
the externally applied traction on surface St/ of the finite element region. Note that terms
associated with the volume integral in eqn (24) represents the kinetic and strain energy of
domain V'. respectively. The surface integral over S// corresponds to the work done by the
traction field on S~.

The substitution of eqns (4). (9). (II). (13). and (22) in eqn (24) results in an explicit
representation for L in terms of nodal displacement and velocity vectors. These explicit
representations arc then substituted into eqn (23). Subsequent differentiations together with
the orthogonality of trigonometric functions. and the assumption that motion is harmonic.
leads to the following equations of motion for each harmonic m:

where

[-w~[M]m+[K]",+[K]",]q", = Pm, m = 0.1.2•...

[K]", = ~IIi, [8],:;[D] [8]", d V'

P", =~IL[Q]",[NrlN] [Q]", F;;' dS~

(26)

(27a)

(27b)

(27c)

(27d)

In the above equations. V' denotes volume of a ncar-field clement and So denotes the
surface area over which external tractions arc applied on a ncar-field finite element. It can
be observed that the first two terms in eqn (26) represent the standard form of symmetric
mass and stiffness matrices ofa ncar-field finite clement region in an e1astodynamic analysis.
Note that circumferential dependence embedded in [Q]", in eqns (27) C'IO be integrated
analytically in the numerical implementation.

In eqn (26). [K",] represents the contribution of the boundary tractions representing
the influence of domain V on V' to the equation of motion corresponding to the mth
harmonic and defined as

- [0 0][K]", = 0 [H]", .

The square stiffness matrix [H]", of size 3"h is defined as

SAS 24:12-C

(28)
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It should be mentioned here that fH]", is symmetric irrespective of the symmetry of
fG·]", defining the relationship between the mth harmonic of nodal displacement and
traction vectors at the boundary.

At this stage. attention is focused to studies by Wolf and Darbre (I 98~) and Chen and
Penzien (1986). where the contribution of the exterior domain is incorporated into the
equations of motion through the continuity of displacements and tractions at boundary
nodal locations. In these formulations. fG·]", enters into the analysis as a direct addition to
the equation of motion. Therefore. the symmetry of the final equation system is violated
unless fG·]", is symmetric. As a consequence. a special technique such as the weighted
residual version of the indirect boundary element method has to be used to guarantee the
symmetry of [G*]",. However. in the present formulation, the intluence of exterior domain
is incorporated directly into the variational treatment. instead of using a discrete continuity
relationship. Consequently. the unconditional symmetry of [H]", allows the use of both
direct and indirect versions of the boundary integral equation method without any special
techniques.

THE BOUNDARY TRACTION-DISPLACEMENT RELATIONSHIP

The hybrid formul<ltion presented in the preceding section relics on the existence of a
traction ·displ<lcement rel<ltionship <It boundary S. In eqn (16), such <I rekltionship has been
cst<lblished between h<lrmonics of displacement and traction at the boundary through the
Green's function G~il(r, =:r. =') corresponding to domain V.

It is important to realize that the above Green's function is dillcrent from that cor
responding to a uniform half space without a cavity. According to the authors' knowledge,
a direct derivation 01''1 Green's function for'l half space with a cavity has not been reported
in the literature, even for the simplest possible loading c<lse. In the present study, the
relationship between bound<lry traction and displacements is obtained through the appli
cation of integral representation theorems (Eringen and Suhubi, 1975) (direct boundary
integral equation method) or the indirect boundary integral equation method due to Ohsaki
(1973). These <llgorithms arc based on displacement and traction Green's functions for a
uniform (without a cavity) half space region.

Indirect method
First, consider the indirect boundary integrul equation method due to Ohsaki (1973).

The traction·-displacement relationship at boundary S is developed by considering the
uniform half space region. In this method. an arbitrary contour S' interior to S is selected
as shown in Fig. 3. In a three-dimensionalligure Sand S' represent a hemispherical surface
S" and S;/o respectively. Consider a force tield t' applied over the surface S. In view of the
axial symmetry, it is possible to develop the following relationships involving harmonics
of displacements and tractions in S and harmonics of forces <Ipplied on S'

z
Fig. J. Uniform half space region with contours Sand S·.
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zI'"",(r.:) = r G~(r,:;r',:')rpm(r',:')r'dS'
Js'

1213

(30)

r"",(r.:) = r T;'/I(r.:;r.:')rpm(r'.:')r'dS'. (r.:)eS. (r'.:')eS'. (31)Js.

In eqns (30) and (3 n. G;'/I(r. :; r. :') and T;'/l(r. :; r'. :') denote harmonics of
displacements and traction in the :x-direction at point (r. :) due to a ring load through point
(r'. :') in the p-direction. Note that G;o and T;'/I are displacement and traction Green's
functions, respectively, for a uniform (undisturbed) half space. A discrete representation of
eqn (30) may be obtained by considering a total of,,; nodal points on S' and applying eqn
(30) to n~ nodal locations on S. In doing so. the following representation is obtained:

(32)

where

In eqn (32). ~:.. is a vector containing the tilth harmonic of forces applied on S' and it
is defined similarly to ~m given by eqns (15). The number of nodal locations on Sand S'
need not be equal. since ~;" corresponding to a specified q~, may be obtained by solving eqn
(32) in a least square sense. In doing so. the following relationship can be established:

(33)

where

The mth harmonic of the force vector or;" at .1 point may be interpolated in terms of
nodal vector g;" as

(34)

Substitution of eqns (33) and (34) into eqns (31) yields

(35)

where

(T'") = (T: T;:, T~), (r,:)eS

T;P = (1#,(r, =; r', ='» I ••;.

The application of eqn (35) to nodal locations on S leads to the following relationship
between the mth harmonic of the nodal traction vector g", and the displacement vector ci:. :
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(36a)

Comparison of eqns (21) and (36a) implies that

[G*]m = 1. [T;p] [N] [A]mr dS'. (36b)

Direct method
As an alternative to the above indirect boundary integral equation algorithm. one can

also use the integral representation theorem for an elastic solid (Eringen and Suhubi. 1975)
to obtain a representation for [G*) in terms of tractions and displacement Green's functions
for a uniform half space. In the case of systems involving axial symmetry. a reduced version
of representation theorems may be written as

<5(r'. :')/I,m(r'. :') =L[Gp,(r.:; r. :')'/I",(r.:) - Tii~(r.:; r. :')/I~m(r. :)] r dS (37)

where

{

a. (r'. :') e V'

/5(r.:') = !. (r'.:')eS

I. (r.:')eV.

The application of ::qn (37) with (r. :') e V' leads to the identity

(3X)

f G;;~ (r.:; r. :')'/I",(r. :)r dS =f T;;~ (r.: ; r. :')l1~",(r. :)r dS. (r'. :') e V'. (r.:) e S.
s s

(39)

Note that '/I",(r. :) and lI~",(r.:) of boundary S may be interpolated in terms of nodal
vectors J.:,,, and q~" respectively. as given by eqns (14) and (13). This. together with the
consideration of a set of points on an arbitrary contour S' (Fig. 3) yields a discrete version
of eqn (39) as

[B)",~m = [C]",q~" (40)

where

[BI", = f... [G/1,1"'[N)rdS (41 )

and

[el", = f... [T'/I)"'[N)rdS. (42)

A direct representation of g,., in terms of q7" may be obtained from eqn (40) if the
number of points selected on Sand S' are equal. In this case
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g." = [B],;; I [Clmq~.

The above equation implies that [G*]m in eqn (21) may be expressed as

[G*]m = [B]';; I [Clm.

1215

(43)

(44)

Comparison of eqns (36b) and (44) shows that in both methods load sources are
considered on S'. In the direct method, ring load sources acting at discrete points on S' are
used whereas in the indirect method loading sources distributed along the entire contour
S' are used. On the other hand, in the direct method the entire contour S is incorporated
into the analysis. whereas in the indirect method only discrete points located on S are used.
When the number of nodal points considered on Sand S' are equal, the indirect method
reduces to a representation similar to that obtained from the direct method. However, the
associated matrices involve integrals defined over two different contours.

Another representation for g." derived on the basis of eqn (37) for a given q~ which
does not require that the number of nodal points on Sand S' be equal is presented by
Apsel (1979). Apsel's scheme leads to a representation similar in structure to that obtained
through the application ofOhsaki's scheme (1973) as given by eqn (36b).

At this stage, it can be stated that the boundary traction-displacement relationship
[G·]m for a given harmonic can be estahlished hy using eqn (36b) or eqn (44). Any of these
representations of [G·Jm will allow the computation of [HIm in eqn (29). Thereafter,
eqn (26) is solved for qm corresponding to a given geometric and loading configuration.
Representations for [G·Jm involve matrices the elements of which arc displacement and
traction Green's functions for a half space due to ring loads with circumferential dependence
/':(0). 1\ hrief discussion on the derivation of these Green's functions is presented in the
following section.

(in'(''''s jimct;o"s
The cstablishment of traction . displacement relationship [G* 1m relics on the availability

of Green's functions corresponding to a uniform half sp'lce in the absence of any inhomo
geneity. The gener.a1 solution to equations of equilibrium for a three-dimensioOlII elastic
solid may bc obtained through the applic'ltion of Hankel integml transform techniques.
The study by Harding and Sneddon (1945) presents perhaps the earliest application of
Hankel integml transforms in the solution of boundary-value problems in classical elasticity.
1\ later study by Muki (1960) presented a genemlization of thc solution approach of
Harding and Sneddon (1945) to solve boundary-value problems in e1astostaties involving
axisymmetric geomctries under arbitrary loading. Later studies by Westmann (1964) and
Chan e/ al. (1974) demonstrated the application of Muki's approach to obtain e1astostatic
Green's functions for layered mediu. A general formulation for elastostatics of layered
systems in terms of Fourier integruls has been presented by Chen (1971). The dynamic
response of a multi-layered hulfspuce has been investigated by many researchers over the
past several yeurs. Among others, Thompson (1950), Haskell (1953), Jardetzky (1953),
Harkrider (1964, 1970), Schwab (1970), Apsel (1979), Luco and Apscl (1983) and Apsel
and Luco (1983) studied various aspects of the dYOllmic Green's functions of a multi
layered half space.

These studies indicate thut in general, the explicit derivation of Green's functions G;'f1
and T~ for an arbitrary harmonic", is possible only in the case of a homogeneous half
space. The tedious nature of algebra involved in the derivation of Green's functions for
layered systems can be seen from the solution of Chan et al. (1974), where a static loading
at the interior of a singlc-Iayered half space system is considered. (n the case of multi
layered systems, the most efficient way is to solve numerically for arbitrary functions
appe'lring in the generul solution and to construct all Green's functions through an appro
priate numerical integration scheme. The studies of Apscl (1979). Luco and Apsel (1983)
and Apsel and Luco (1983) present a concise treatment of the evaluation of Green's
functions for a multi-layered elastic half space. A systematic procedure for the numerical
evaluation of Green's functions, its implementution and various computational aspects are
discussed in detail in these references.
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Fig. 4. Geometries and loading: configurations: (it) torsinnallO<ld on hom0t-ocncous half space: (b)
uniform vcrtil:al pr\.~sllrc on hOllwgcncous half spaCe; (c) tursiollalluad on layered half spaee; (tl)

h
'
fsinl1illly Ill"d cmhcdd\.'I.l cylinder in layered h:tlf Sl"ilCC.

NUMERICAL RESULTS

In the numerical study, the performance of the prescnt hybrid algorithm is investigated
by considering a few boundary-value problems 'Issoci.lted with semi-infinite medi41 for
which aml1ytical solutions C~tn be derived.

Prub!em /
The problem of a homogeneous elastic half space subjected to a linearly varying static

(w = 0) torsional patch IO~ld applied Over .1 circular area at the surface level, as shown in
Fig. 4(a) is considered. The amllytic.11 solution corresponding to this boundary value
problem may be obtuincd from the fundamental solutions presented by Karasudhi et af.
(1984). Their solution is expressed in terms of infinite integrals of the Lipschitz-Hankel
type, which may be expressed in terms ofelliptic integrals by using identities given by Eason
et al. (1955). At present, mathematical software is available to compute elliptic integrals
with very high numerical precision. Therefore, the elastostatic solution corresponding to
the loading configuration shown in Fig. 4(a) can be computed very accurately without
adopting computatiomllly expensive and less accurate numerical integration schemes. The
near-field finite element meshes (eight-node clements) used in the hybrid scheme are shown
in Figs 5(a)-(c). These represent relatively cmlrsc to liner mesh configurations. Note that
for the loading configuration shown in Fig. 4(1.1), II, and u~ are identically zero. Displacement
and traction Green's functions req uired in the computation of [G*]" of the exterior domain
have been given (Rajapakse and Sclvadurai, 1985). The resulting expressions consisting of
infinite integrals arc then expressed in terms of elliptic integrals (Eason et al.• 1955) for
numerical evalUi.ltion.

At this stage, it is useful to define a measure of the error of displacement for the
purpose of comparison. The Euclidean norm of the error of displacement in the O-dircction
along a specified contour is defined as

k= b,s. (45)

In eqn (45), subscripts band s are used to denote quantities associated with the finite
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Fig. S. Near·field finite element mesht."S.

Tahle I. Comparison of Eudide;m norm of error of displ..ccmcnt II" for v..rious mesh conligumtions shown in
Fig. Sand 1(~ati(11\ of S' for static loading shown in Fig. 4(a): JI = I, diu'"' 0.5

Mesh
number

~(%) ~(%)

fj .= O.'JS fj .= 0.9 fj '" O.K5 fj .= 0.75 fj '" O.9S fj '" 0.9 fj = O.IIS 6 .. 0.75

Mesh 1
Mesh :!
Mesh 3

-:!AI
-0.07
-O.4:!6

-1.21
-O.IS4
-0.193

-0.9K8
-0.111
-0.179

-0.940
-0. lOll
-0.174

-20.1:!
-1I.'J7
-0.4211

-3.66
-0.700
-0.378

-0.50S
-0.040
-0.233

0.110
-0.00'-)
-0.225

element boundary (BA) and surface level (OA); nb and nJ denote the number of nodal
locations on BA and OA, respectively; uOJ denotes displacement in the O-direction at node
j obtained from the hybrid scheme and iiuj denotes the corresponding analytical solution.

Table I presents numerical values for Eb and EJ obtained from the present hybrid
scheme for three finite element meshes shown in Fig. 5. These results correspond to four
different locations of contour S' characterized by 5 (= a'fa) and [G·]o obtained using eqn
(44), which is based on a direct application of integral representation theorems. In most
cases, the tabulated error norms are very small, indicating the high accuracy of the present
hybrid scheme. It can be seen that for Ii = 0.95, the value of Eb is quite large when compared
to Eh for other values of 5. This is due to the fact that as Ii - I, Green's functions approach
singular values, resulting in ill-conditioned matrices in the process of evaluation of [G·]o.
In general, the results presented in Table I suggest that near exact solutions can be obtained
from the prescnt hybrid algorithm using any of the finite element meshes shown in Fig. 5
with O.75 ~ Ii ~ 0.90. Table 2 presents numerical values of EJ and Eb when Ohsaki's scheme
(eqn (36b» is used to compute [G·Jo. These results correspond to two locations of contour

Table 2. Comparison of Euclidean norm of error of displaccment u. for
static torsional lo..ding shown in Fig. 4(01) with [G-I. computed using

equation (36b): Il .. I, dIu'"' 0.5

Number of
sources

£,(%)
fj = 0.90 fj .. 0.85

£.(%)
5'"' 0.90 fj .. 0.85

6
8

10

-0.065
0.148

-0.160

-0.132
-0.152
-0.155

1.18
0.126

-0.041

0.305
0.084
0.026
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Fig. 6. Comparison of displacement profiles for static torsional loading (JI = I. p = I. ,1,'(/ = 0.5).

S' defined by 6 = 0.9, 0.85 and three different values for the total number of divisions n;
on S'. For brevity only the numerical results corresponding to the finite clement mesh
shown in Fig. 5(b) arc presented. A comparison of non-dimensionalized displacement
profiles along OA and BA obtained from the hybrid model with the corresponding analytical
solutions are presented in Fig. 6. The high .Iccuracy of the hybrid model is confirmed by
results presented in Tables I and 2 and rig. 6. irrespective of the scheme employed to obtain
[G*)o. Solutions presented in the remainder of this paper are based on [G* Jm computed
using eqn (36b).

Proh!"",2
Atlention is next focused on the e1astodynamic torsional loading problem shown in

rig. 4(a). The relevant non-dimensionalized frequency parameter til) is defined as a o = ak..
where k, is the shear wave number (Achenbach, 1973) corresponding to the surrounding
half space. The analytical solution corresponding to this loading configuration may be
obtained through the application of Hankel integral transforms. The relev.lI1t Green's
functions required to compute [G*)o have been presented (Rajapakse ('( al., 1987). Unlike
in the c1astostatic case. all infinite integrals associated with analytical solutions for the
loading configuration shown in Fig. 4(a) and those involved with the computation of[G*)o
have to be evaluated using a numerical integration scheme. In this study, the standard
Simpson's rule with a sulliciently small interval of integration is used. In general. special
attention is required in the evaluation of these complex-valued infinite integrals, since the
integrand is of an oscillatory nature, and decays very slowly when =-+ =' (Fig. 3). For
elastodynamic problems. qm resulting from the solution of eqn (26), is complex. The error
norms are computed separately using eqn (45) for both real and imaginary parts of solutions.

Table 3 presents E, and E" along OA and BA. respectively, for "0 = 1.25 and 2.0. Thc
source contour S' is located at fj = 0.9 and discretization configurations represented by
n: = 8-14 are considered for S'. The finite clement mesh shown in Fig. 5(c) is selected to
satisfy requirements on the size of a finite clement in elastodynamic analysis (Medina and
Penzien, 1982; Rajapakse and Karasudhi, 1986). The low values of E, and E" in Table '3
indicate the accuracy of the hybrid model for elastodynamic problems. Error norms for the

Table 3. Comparisons of error nomlS along the boundary and surface for time-harmonic
torsionallOilding system shown in Fig. 4(01): I' = I. II = I. fi = 0.9. n. = 16

_.. __ .. _._----
U o = 1.25 Uti = 2.00

n; £,(%) E.(%) £,(%) £.(%)

8 (0.39.7.14) (5.36.3.65) (0.09.6.76) (5.57.4.23)
10 (0.20. 1.75) (3.14.0.26) (0.06. 3.02) H.94. 1.91)
12 (-0.09.3.50) ( - 1.32. - 7.37) (0.0 I. - 1.02) (4.14. -4.69)
14 (0.09. 1.07) (1.25. - 1.62) (-0.08.2.36) (3.34. -0.05)
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-- AIlOIItIeal (00- 2.0)
---- AnalJfieal (00· 1.25)

0.10 0 Hyt:ll'id (00- 2,0)
II Hybrid (00- 1.251

0.08

~ 0.06-o

Fig. 7. Comparison of surface displacement profiles for harmonic torsional loading (p. = I. p = I.
diu = 0.5).

imaginary part of displacement are found to be slightly higher than those of real parts. In
general. the error norm along the boundary (Eh) is higher than those for the static problem.
Figure 7 presents a comparison of the non-dimensionalized surface displacement profile
along OA for all = 1.25 and 2.0. The corresponding displucement profiles along the finite
clement boundary BA arc presented in Fig. 8. The high accuracy of the present hybrid
model is confirmed by thl."SC results for elastodynamic problems.

Proh/t'm 3
The next problem considered is that corresponding to a uniform harmonic vertical

pressure upplied over a circular area on the surface as shown in Fig. 4(b). The analytical
solution corresponding to this loading configuration has bt.-en given for clastostatic and
e1astodynamic cases (Selvadurai and Rajapakse, 1985; R.tjapakse and Shah, 1987). For

";' 0.012
:::::.
-&-
o 0.008
Q.
:2......
! 0.004

I

- Analytical
o Hybrid

0.5 1.0

1.0

";' 0.012....
-&-
!f, 0008

-,:,0iI......

0.5

ria

Fig. 8. Comparison of boundary displacement profiles for harmonic torsional loading (II = I. P = I.
diu =0.5).
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the static problem, the analytical solution and Green's functions required in the evaluation
of [G *Jill arc computed by expressing all infinite integrals in terms of elliptic integrals. For
e1astodynamic problems, the integrands of infinite integrals associated with the analytical
solution and Green's functions arc singular at k" kp and k" where k" kp and k, denote wave
numbers ofshear, compressional and Rayleigh waves (Achenbach, 1973) of the surrounding
half space. All Green's functions required in the computation of [G*Jn corresponding to
the e1astodynamic problem arc evaluated using numerical integration along an appropriate
contour in the first quadrant of the complex plane (Rajapakse and Shah, 1987). A com
parison of surface displacement proliles for both II: and II, obtained using a finite clement
mesh shown in Fig. 5(c) arc presented in Fig. 9. These results confirm the applicability and
accuracy of the present hybrid model under general loading configurations, and a wide
range of frequencies of applied loading.

Proh/('III 4
The next problem considered in the numerical study is the case of torsional vibrations

of a layered clastic half space under the surfuce louding configuration shown in Fig. 4(c).
The finite clement mesh of Fig. 5(d) is used. The analytical solution and Green's functions
required to compute [G*Jo corresponding to this problem arc derived by using Hankel
integral transforms. A compurison of surface displacement profiles over u wide range of
frequency of excitation is presented in Fig. 10. Note that in this problem, ao = ak;, where
k; is the sheur wave number of the layer. The accuracy of the hybrid model for elastodynamic
problems involving layered systems is confirmed by solutions presented in Fig. 10. Solutions
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Fig. 10. Comparison of surf:ll."C displacement profiles of Ihe layered h:llf space under harmonic
lorsionalloading (JII .. 2/l1 .. I, I'I .. PI .. 1.///11" 0.5. d/ll .. 0.5. Ii .. 0.85. n; .. 10. n~ .. 21).

were also obtained by varying fj from 0.90 to 0.75 and n; from 12 to 8 and these variations
showed negligible influence on the solution.

Figure II shows surface displacement profiles obtained from the present study for a
layered half space containing a flexible cylindrical inclusion, as shown in Fig. 4(d), under
a harmonic torsional loading applied at the surface Icvel. The results were obtained employ
ing the mesh of Fig. 5(d). It is notcd that the flexibility of the cylinder has a significant
influence on the real part of the displacement within rIa == 0.6, and its influence on the
imaginary component is negligible. A similar behaviour of the imaginary component was
observed (Rajapakse et al., 1987) where an approximate analysis is presented for a flexible
hemispherical foundation embedded in a homogeneous half space.

DISCUSSION AND CONCLUSIONS

The accuracy and efficiency of the present hybrid model is confirmed by the above
numerical examples. The extension to elastostatic or elastodynamic problems involving a
multi-layered half space does not involve any complications except the implementation of
a more generalized sub-program for the numerical evaluation of Green's functions. Since
conventional finite elements are used to model ncar field a variety of axisymmetric ge
ometries and material properties may be considered for near-field inhomogeneities. It should
also be mentioned here that the present method does not impose any restriction on the
geometry of contours Sand S', although in this study these are selected as quarter
circles for homogeneous half space problems. In the case of layered media (Rajapakse and
Karasudhi, 1985), it is convenient to take contours Sand S' parallel to the z-axis within
the layers and as quarter-circles in the underlying half space, respectively, as shown in Fig.
5(d). The extension of the hybrid model to plane and general three-dimensional problems
involves only the substitution of relevant basic equations for displacements, strains, and
stresses.
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cylinder (/1, = 2/1: = I. 1', '" 1': = I'r = I. II/II =OA. 11,/11 = 0.25. II/II =0.5. Ii =0.1l5. n; = 10.

1/_ = 21).

Based on the comprehensive study presented in this paper. the following conclusions
are drawn.

(a) The hybrid formulation presented in this study provides an accurate and ellicient
solution procedure for elastostatic and c1astodynamic problems involving layered semi
infinite media.

(b) The present formulation guarantees a symmetric stiffness matrix in the analysis.
This allows the use of both direct and indirect versions of the boundary integral equation
method in the analysis.

(c) It is desirable from a computational point of view to select the contour S' sulliciently
away from the finite element boundary and to use widely spaced source points on S' to
avoid ill-conditioned matrices in the process of evaluation of [G*lm. In view of this. it is
recommended that eqn (36b) is used to compute [G*l", instead of eqn (44). This enh'lIlces
the computational elliciency and numerical stability of the present algorithm. Alternatively.
[G*lm can be obtained from the direct boundary integral equation by using the scheme
proposed by Apsel (1979).

Ikknowl/.'d.q/.'m/.'nI-The work prescnted here w;as supported by grants A·6507 and A·7lJllll from the Natural
Sdem."C and Engineering Research Council of Can..d.1. The ;authors arc greatly indebted to the reviewers of this
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